Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.
نویسندگان
چکیده
ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.
منابع مشابه
Membrane phosphoinositides control insulin secretion through their effects on ATP-sensitive K+ channel activity.
ATP-sensitive K(+) channels (K(ATP) channels) of pancreatic beta-cells play key roles in glucose-stimulated insulin secretion by linking metabolic signals to cell excitability. Membrane phosphoinositides, in particular phosphatidylinositol 4,5-bisphosphates (PIP(2)), stimulate K(ATP) channels and decrease channel sensitivity to ATP inhibition; as such, they have been postulated as critical regu...
متن کاملAnti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels
Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...
متن کاملATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice
Introduction: We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. Methods: We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior te...
متن کاملATP modulation of ATP-sensitive potassium channel ATP sensitivity varies with the type of SUR subunit.
ATP-sensitive potassium (K(ATP)) channels comprise Kir and SUR subunits. Using recombinant K(ATP) channels expressed in Xenopus oocytes, we observed that MgATP (100 microm) block of Kir6.2/SUR2A currents gradually declined with time, whereas inhibition of Kir6.2/SUR1 or Kir6.2DeltaC36 currents did not change. The decline in Kir6.2/SUR2A ATP sensitivity was not observed in Mg(2+) free solution a...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2000